Identification of composite local linear state space models using a projected gradient search
نویسندگان
چکیده
An identification method is described to determine a weighted combination of local linear state space models from input and output data. Normalized radial basis function are used for the weights, and the system matrices of the local linear models are fully parameterized. By iteratively solving a nonlinear optimization problem, the centers and widths of the radial basis functions and the system matrices of the local models are determined. To deal with the nonuniqueness of the fully parameterized state space system, a projected gradient search algorithm is described. It is pointed out that when the weights depend only on the input, the dynamical gradient calculations in the identification method are stable. When the weights also depend on the output, certain difficulties might arise. The methods are illustrated using several examples that have been studied in the literature before.
منابع مشابه
Efficient Implementation of Separable Least Squares for the Identification of Composite Local Linear State-space Models
Abstract: The efficient implementation of separable least squares identification of nonlinear systems using composite local linear state-space models is discussed in this paper. A full parametrization of system matrices combined with projected gradient search is used to identify the model. This combined approach reduces the number of iterations and improves the numerical condition of the optimi...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملPresentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001